Synthesis of novel vanillin-amine hardeners fully derived from renewable bio feedstocks and their curing with epoxy resins to produce recyclable reprocessable vitrimers

完全由可再生生物原料合成的新型香兰素胺固化剂,并将其与环氧树脂固化,以生产可回收、可再加工的玻璃聚合物

阅读:6
作者:Muhammad Abdur Rashid, Md Nabiul Hasan, Md Abdullahil Kafi

Abstract

Biobased epoxy vitrimers have reached intense interest in recent decades. The triggerable reverse bonds can be introduced into these crosslinked epoxy vitrimers through epoxy resins or hardeners. This study synthesized two imine hardeners, such as vanillin-butanediamine (V-BDA) and vanillin-hexanediamine (V-HDA), using biobased vanillin, butanediamine, and hexanediamine and their chemical structures were ensured by FTIR, 1HNMR, 13CNMR, and TOF-MS. The two novel hardeners were used to cure epoxy resins, rendering vitrimers with good reprocessability, self-healing, recyclability, and solvent resistance due to the reversible imine bonds. The flexural strengths and modulus of these cured resins were consistent with those of epoxy resins that were hardened with traditional amine-based hardeners. The cured resins maintained 100% of their Tg and flexural properties after being reprocessed up to three times. It was revealed that the cured epoxy vitrimers could be degraded entirely in a particular acidic solution capable of bond-exchanging reactions within 12 h at 50 ᵒC, allowing the thermoset matrix to be chemically recycled and the monomers regenerated. This versatile recyclability, combined with the use of fully biobased feedstocks to prepare the hardeners, provides an attractive approach to help achieve a sustainable circular composite economy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。