Expression of E. coli FimH Enhances Trafficking of an Orally Delivered Lactobacillus acidophilus Vaccine to Immune Inductive Sites via Antigen-Presenting Cells

大肠杆菌 FimH 的表达增强了口服嗜酸乳杆菌疫苗通过抗原呈递细胞向免疫诱导位点的运输

阅读:4
作者:Allison C Vilander, Kimberly Shelton, Alora LaVoy, Gregg A Dean

Abstract

The development of lactic acid bacteria as mucosal vaccine vectors requires the identification of robust mucosal adjuvants to increase vaccine effectiveness. The E. coli type I fimbriae adhesion protein FimH is of interest as a mucosal adjuvant as it targets microfold (M) cells enhancing vaccine uptake into Peyer's patches and can activate the innate immune system via Toll-like receptor (TLR) 4 binding. Here, we displayed the N-terminal domain of FimH on the surface of a Lactobacillus acidophilus vaccine vector and evaluated its ability to increase uptake of L. acidophilus into Peyer's patches and activate innate immune responses. FimH was robustly displayed on the L. acidophilus surface but did not increase uptake into the Peyer's patches. FimH did increase trafficking of L. acidophilus to mesenteric lymph nodes by antigen-presenting cells including macrophages and dendritic cells. It also increased transcription of retinaldehyde dehydrogenase and decreased transcription of IL-21 in the Peyer's patches and mesenteric lymph nodes. The N-terminal domain of FimH did not activate TLR4 in vitro, indicating that FimH may stimulate innate immune responses through a not-yet-identified mechanism. These results indicate that E. coli FimH alters the innate immune response to L. acidophilus and should be further studied as an adjuvant for lactic acid bacterial vaccine platforms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。