Symmetry Breaking of Human Pluripotent Stem Cells (hPSCs) in Micropattern Generates a Polarized Spinal Cord-Like Organoid (pSCO) with Dorsoventral Organization

微图案中人类多能干细胞 (hPSC) 的对称性破坏产生了具有背腹组织的极化脊髓样类器官 (pSCO)

阅读:5
作者:Kyubin Seo, Subin Cho, Hyogeun Shin, Aeri Shin, Ju-Hyun Lee, June Hoan Kim, Boram Lee, Hwanseok Jang, Youngju Kim, Hyo Min Cho, Yongdoo Park, Hee Youn Kim, Taeseob Lee, Woong-Yang Park, Yong Jun Kim, Esther Yang, Dongho Geum, Hyun Kim, Il-Joo Cho, Sanghyuk Lee, Jae Ryun Ryu, Woong Sun

Abstract

Axis formation and related spatial patterning are initiated by symmetry breaking during development. A geometrically confined culture of human pluripotent stem cells (hPSCs) mimics symmetry breaking and cell patterning. Using this, polarized spinal cord organoids (pSCOs) with a self-organized dorsoventral (DV) organization are generated. The application of caudalization signals promoted regionalized cell differentiation along the radial axis and protrusion morphogenesis in confined hPSC colonies. These detached colonies grew into extended spinal cord-like organoids, which established self-ordered DV patterning along the long axis through the spontaneous expression of polarized DV patterning morphogens. The proportions of dorsal/ventral domains in the pSCOs can be controlled by the changes in the initial size of micropatterns, which altered the ratio of center-edge cells in 2D. In mature pSCOs, highly synchronized neural activity is separately detected in the dorsal and ventral side, indicating functional as well as structural patterning established in the organoids. This study provides a simple and precisely controllable method to generate spatially ordered organoids for the understanding of the biological principles of cell patterning and axis formation during neural development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。