Investigating a downstream gene of Gpnmb using the systems genetics method

使用系统遗传学方法研究 Gpnmb 下游基因

阅读:5
作者:Ye Lu, Diana Zhou, Hong Lu, Fuyi Xu, Junming Yue, Jianping Tong, Lu Lu

Conclusions

These results suggest that Stc1 may be a downstream candidate of Gpnmb, and that both genes interact with other genes in a network to develop glaucoma pathogenesis through mechanisms such as apoptosis and oxidative stress.

Methods

Retinal gene expression data for the BXD recombinant inbred (RI) strains (n=75) have previously been generated in our laboratory for a glaucoma study, and these data were used for genetic and bioinformatics analysis. Expression quantitative trait locus (eQTL) mapping and genetic correlation methods were used to identify a gene downstream of Gpnmb. Gene-set enrichment analysis was used to evaluate gene function and to construct coexpression networks.

Purpose

Glaucoma is characterized by optic nerve damage and retinal ganglion cell loss. The glycoprotein neuromedin B-associated (Gpnmb) gene is well-known to be involved in the glaucoma disease process. The purpose of this study is to identify a downstream gene through which Gpnmb affects the glaucoma phenotypes using a systems genetics approach.

Results

The level of Gpnmb expression is associated with a highly statistically significant cis-eQTL. Stanniocalcin 1 (Stc1) has a significant trans-eQTL mapping to the Gpnmb locus. The expression of Gpnmb and Stc1 is highly correlated in the retina and other tissues, as well as with glaucoma-related phenotypes. Gene Ontology and pathway analysis showed that Stc1 and its covariates are highly associated with apoptosis, oxidative stress, and mitochondrial activity. A generated gene network indicated that Gpnmb and Stc1 are directly connected to and interact with other genes with similar biologic functions. Conclusions: These results suggest that Stc1 may be a downstream candidate of Gpnmb, and that both genes interact with other genes in a network to develop glaucoma pathogenesis through mechanisms such as apoptosis and oxidative stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。