Empirical modelling of 2205 DSS flow curves using strain-compensated Arrhenius rate-type constitutive model

使用应变补偿阿伦尼乌斯速率型本构模型对 2205 DSS 流动曲线进行经验建模

阅读:4
作者:Elvis M Gonya, Charles W Siyasiya, Mamookho E Makhatha

Abstract

This work predicts, hot flow curves of 2205 DSS using strain-compensated Arrhenius rate-type constitutive model. Twenty-five (25) × Ø10 diameter × 15 mm height cylindrical samples were hot compressed at a temperature between 850 and 1050 °C at an interval of 50 °C and strain rates between 0.001 and 5 s-1, using Gleeble 1500D. After the tests, corrected flow curves were plotted followed by computation of deformations constants at various deformation conditions using steady state stress. The values of the constants were (α = 0.009708, Q = 445 kJ/mol and n = 3.7) and seemed comparable to the previous studies of DSS. Steady state predictive model was then constructed using the calculated constants and showed a reasonably good accuracy with low value of MARE = 7.78%. Furthermore, calculated strain compensated Arrhenius rate type model was used to predict flow curves at various deformation. The model had a good estimation of flow curves of flow curves at 900-1050 °C across all strain rates as reflected by MARE = 5.47%. A notable discrepancy between predicted and experimental flow stress was observed at 850 °C and across all the strain rates. A model refinement using generalised reduced gradient improved the accuracy of the model by 34.7% despite deformation conditions at 850 °C and low strain rates (0.01/ 0.1) s-1 showing minimum improvement. Further modification of Z-parameter by compensating for the strain rate improved the accuracy of the model at 850 °C/0.01 s-1/0.1 s-1. Lastly, a comparison of the current model with the other non-linear model showed that the latter was more accurate in estimation of flow curves since it relied on characteristics flow stress points controlled by underlying active deformation mechanisms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。