An open-source, battery-powered, low-cost, and dual-channel pneumatic pulse generator for microfluidic cell-stretch assays

用于微流体细胞拉伸分析的开源、电池供电、低成本、双通道气动脉冲发生器

阅读:13
作者:Samuel Olson, McKenna Finley, Raviraj Thakur

Abstract

Cells in the body are regularly subjected to mechanical forces that influence their biological fate in terms of morphology, gene expression, and differentiation. The current gold standard method to replicate these effects in vitro is to culture cells on devices with elastic substrates and to impart mechanical stretch using mechanical or pneumatic pull-push methods. Microfluidic device designs offer several advantages in this context for general uniform and controlled stretching. However, the experimental setups are bulky, not user-friendly, and often involve several components that reside outside of the tissue culture incubator. Given the wide utility of mechanical stimulation in in-vitro research, our aim was to create a turn-key research tool that bioengineers can deploy in their cell-stretch assays, without having to deal with the complexity and nuances of ad hoc experimental setups. Here, we present an open-source, battery-powered, dual-channel cyclic pneumatic pulse generator box that can reside within an incubator and is compatible with custom microfluidic cell stretch devices. Our method depends on generating pressure-vacuum pulses simply using a linear miniature pneumatic air cylinder actuated using a continuous servo motor. To the best our knowledge, this is a first example of a completely battery-powered, standalone system that doesn't have any peripherals residing out of the incubator. We provide a detailed list of different components as well as the step-by-step assembly process. We validate its performance in a cell stretch assay using a commercially available microfluidic chip. Our results show an acute stimulation of cyclic stretching over 8 h on human umbilical vein endothelial cells (HUVECs) resulted in preferential alignment of cells perpendicular to the axis of stretch.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。