Quantifying fitness distributions and phenotypic relationships in recombinant yeast populations

量化重组酵母群体的适应度分布和表型关系

阅读:14
作者:Ethan O Perlstein, Eric J Deeds, Orr Ashenberg, Eugene I Shakhnovich, Stuart L Schreiber

Abstract

Studies of the role of sex in evolution typically involve a longitudinal comparison of a single ancestor to several intermediate descendants and to one terminally evolved descendant after many generations of adaptation under a given selective regime. Here we take a complementary, statistical approach to sex in evolution, by describing the distribution of phenotypic similarity in a population of yeast F1 meiotic recombinants. By applying graph theory to fitness measurements of thousands of Saccharomyces cerevisiae recombinants treated with 10 mechanistically distinct, growth-inhibitory small-molecule perturbagens (SMPs), we show that the network of phenotypic similarity among F1 recombinants exhibits a scale-free degree distribution. F1 recombinants are often phenotypically unique and sometimes exceptional, and their fitness strengths are unevenly distributed across the 10 compound treatments. By contrast, highly phenotypically similar F1 recombinants constitute failing hubs that display below-average fitness across all compound treatments and are candidate substrates for purifying selection. Comparison of the F1 generation with the parental strains reveals that (i) there is a specialist more fit in any given single condition than any of the parents but (ii) only rarely are there generalists that exhibit greater fitness than both parental strains across a majority of conditions. This analysis allows us to evaluate and to gain better theoretical understanding of the costs and benefits of sex in the F1 generation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。