Upregulation of Hox genes leading to caste-specific morphogenesis in a termite

Hox 基因上调导致白蚁种姓特异性形态发生

阅读:6
作者:Kohei Oguchi, Toru Miura

Background

In social insects, interactions among colony members trigger caste differentiation with morphological modifications. In termite caste differentiation, caste-specific morphologies (such as mandibles in soldiers, genital organs in reproductives or wings in alates) are well developed during post-embryonic development under endocrine controls (e.g., juvenile hormone and ecdysone). Since body part-specific morphogenesis in caste differentiation is hormonally regulated by global factors circulated throughout the body, positional information should be required for the caste-specific and also body part-specific morphogenesis. To identify factors providing the positional information, expression and functional analyses of eight Hox genes were carried out during the three types of caste differentiation (i.e., soldier, neotenic and alate differentiation) in a termite, Hodotermopsis sjostedti.

Conclusions

Gene expression and functional analyses in this study revealed that, in the caste differentiation in termites, upregulation of Hox genes provide positional identities of body segments, resulting in the caste-specific morphogenesis. The acquisition of such developmental modifications would have enabled the evolution of sophisticated caste systems in termites.

Results

Spatio-temporal patterns of Hox gene expression during caste differentiation were elucidated by real-time qPCR, showing the caste-specific upregulations of Hox genes during the differentiation processes. Among eight Hox genes, Deformed (Dfd) was upregulated specifically in mandibles in soldier differentiation, abdominal-A (abd-A) and Abdominal-B (Abd-B) were upregulated in the abdomen in neotenic differentiation, while Sex-comb reduced (Scr) and Antennapedia (Antp) were upregulated during alate differentiation. Furthermore, RNAi knockdown of Dfd in soldier differentiation and of abd-A and Abd-B in neotenic differentiation distorted the modifications of caste-specific morphologies. Conclusions: Gene expression and functional analyses in this study revealed that, in the caste differentiation in termites, upregulation of Hox genes provide positional identities of body segments, resulting in the caste-specific morphogenesis. The acquisition of such developmental modifications would have enabled the evolution of sophisticated caste systems in termites.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。