In search of rat stem Leydig cells: identification, isolation, and lineage-specific development

寻找大鼠 Leydig 干细胞:鉴定、分离和谱系特异性发育

阅读:9
作者:Ren-Shan Ge, Qiang Dong, Chantal M Sottas, Vassilios Papadopoulos, Barry R Zirkin, Matthew P Hardy

Abstract

Leydig cells (LCs) are thought to differentiate from spindle-shaped precursor cells that exhibit some aspects of differentiated function, including 3beta-hydroxysteroid dehydrogenase (3betaHSD) activity. The precursor cells ultimately derive from undifferentiated stem LCs (SLCs), which are postulated to be present in testes before the onset of precursor cell differentiation. We searched for cells in the neonatal rat testis with the abilities to: (i) proliferate and expand indefinitely in vitro (self renew); (ii) differentiate (i.e., 3betaHSD and ultimately synthesize testosterone); and (iii) when transplanted into host rat testes, colonize the interstitium and subsequently differentiate in vivo. At 1 week postpartum, spindle-shaped cells were seen in the testicular interstitium that differed from the precursor cells in that they were 3betaHSD-negative, luteinizing hormone (LH) receptor (LHR)-negative, and platelet-derived growth factor receptor alpha (PDGFR alpha)-positive. These cells were purified from the testes of 1-week-old rats. The cells contained proteins known to be involved in LC development, including GATA4, c-kit receptor, and leukemia inhibitory factor receptor. The putative SLCs expanded over the course of 6 months while remaining undifferentiated. When treated in media that contained thyroid hormone, insulin-like growth factor I, and LH, 40% of the putative SLCs came to express 3betaHSD and to synthesize testosterone. When transplanted into host rat testes from which LCs had been eliminated, the putative SLCs colonized the interstitium and subsequently expressed 3betaHSD, demonstrating their ability to differentiate in vivo. We conclude that these cells are likely to be the sought-after SLCs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。