Minimizing the epidemic final size while containing the infected peak prevalence in SIR systems

在 SIR 系统中,最小化疫情的最终规模,同时控制感染的峰值流行率

阅读:16
作者:Juan Sereno, Alejandro Anderson, Antonio Ferramosca, Esteban A Hernandez-Vargas, Alejandro Hernán González

Abstract

Mathematical models are critical to understand the spread of pathogens in a population and evaluate the effectiveness of non-pharmaceutical interventions (NPIs). A plethora of optimal strategies has been recently developed to minimize either the infected peak prevalence ( IPPIPP<math><mrow><mi>I</mi> <mi>P</mi> <mi>P</mi></mrow> </math> ) or the epidemic final size ( EFSEFS<math><mrow><mi>E</mi> <mi>F</mi> <mi>S</mi></mrow> </math> ). While most of them optimize a simple cost function along a fixed finite-time horizon, no consensus has been reached about how to simultaneously handle the IPPIPP<math><mrow><mi>I</mi> <mi>P</mi> <mi>P</mi></mrow> </math> and the EFSEFS<math><mrow><mi>E</mi> <mi>F</mi> <mi>S</mi></mrow> </math> , while minimizing the intervention's side effects. In this work, based on a new characterization of the dynamical behaviour of SIR-type models under control actions (including the stability of equilibrium sets in terms of herd immunity), we study how to minimize the EFSEFS<math><mrow><mi>E</mi> <mi>F</mi> <mi>S</mi></mrow> </math> while keeping the IPPIPP<math><mrow><mi>I</mi> <mi>P</mi> <mi>P</mi></mrow> </math> controlled at any time. A procedure is proposed to tailor NPIs by separating transient from stationary control objectives: the potential benefits of the strategy are illustrated by a detailed analysis and simulation results related to the COVID-19 pandemic.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。