HP-Bodies - Ancestral Condensates that Regulate RNA Turnover and Protein Translation in Bacteria

HP-Bodies - 调节细菌 RNA 周转和蛋白质翻译的祖先凝聚物

阅读:8
作者:Jian Guan, Rebecca Lee Hurto, Akash Rai, Christopher A Azaldegui, Luis A Ortiz-Rodríguez, Julie S Biteen, Lydia Freddolino, Ursula Jakob

Abstract

Uncovering what drives select biomolecules to form phase-separated condensates in vivo and identifying their physiological significance are topics of fundamental importance. Here we show that nitrogen-starved Escherichia coli produce long-chain polyphosphates, which scaffold the RNA chaperone Hfq into phase-separating high molecular weight complexes together with components of the RNA translation and processing machinery. The presence of polyphosphate within these condensates, which we termed HP-bodies, controls Hfq function by selectively stabilizing polyadenylated RNAs involved in transcription and protein translation, and promoting interactions with translation- and RNA-metabolism-associated proteins involved in de novo protein synthesis. Lack of polyphosphate prevents HP-body formation, which increases cell death and significantly hinders recovery from N-starvation. In functional analogy, we demonstrate that polyP contributes specifically to the formation of Processing (P)-bodies in human cell lines, revealing that a single, highly conserved and ancestral polyanion serves as the universal scaffold for functional phase-separated condensate formation across the tree of life.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。