Integration of Biomarkers Into a Signature Profile of Persistent Traumatic Brain Injury Involving Autoimmune Processes Following Water Hammer Injury From Repetitive Head Impacts

将生物标志物整合到持续性创伤性脑损伤的特征谱中,该特征谱涉及反复头部撞击造成的水击伤后的自身免疫过程

阅读:5
作者:Steven Kornguth, Neal Rutledge

Conclusions

An assessment of an individuals' predisposition to persistent TBI with delayed cognitive deficits and behavioral changes requires an understanding of host vulnerability (genetic factors and brain structure) and external stressors (force and torque of impact as well as repetitive head injury and time interval between impacts). An algorithm that has utility in predicting vulnerability to TBI will include qualitative and quantitative measures of the host factors weighted against post impact markers of neural injury. Implementation of the resulting "Signature" of vulnerability at early stages of injury will help inform athletes and warriors, along with commanders and management, of the risk/benefit approaches that will markedly diminish health care costs to the nation and suffering to this population. This report attempts to define a strategy to create such an algorithm.

Methods

Studies of athletes and warriors who are subjected to repeated head impacts with rapid acceleration/deceleration forces are used to assist in the diagnosis and management of TBI-affected individuals. Data from multiple areas, including clinical, anatomical, magnetic resonance imaging, cognitive function, and biochemical analyses, are integrated to provide a Signature of persistent TBI.

Results

Studies to date indicate that susceptibility to TBI results from an interaction between host genetic and structural vulnerability factors and force and torque of impact on the head and torso. The host factors include molecular markers affecting immune and inflammatory responses to stress/insult as well as anatomical features such as the degree of transcortical fiber projections and vascular malformations. The host response to forceful impact includes the release of intracellular neural proteins and nucleic acids into the cerebrospinal fluid and vascular compartment as well as mobilization of cytokines and macrophages into the central nervous system with subsequent activation of microglia and inflammatory responses including autoimmune processes. Maximum impact to the base of the sulci via a "water hammer effect" is consistent with the localization of microvascular and inflammatory responses in the affected brain region. Conclusions: An assessment of an individuals' predisposition to persistent TBI with delayed cognitive deficits and behavioral changes requires an understanding of host vulnerability (genetic factors and brain structure) and external stressors (force and torque of impact as well as repetitive head injury and time interval between impacts). An algorithm that has utility in predicting vulnerability to TBI will include qualitative and quantitative measures of the host factors weighted against post impact markers of neural injury. Implementation of the resulting "Signature" of vulnerability at early stages of injury will help inform athletes and warriors, along with commanders and management, of the risk/benefit approaches that will markedly diminish health care costs to the nation and suffering to this population. This report attempts to define a strategy to create such an algorithm.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。