Relationship between increase in astrocytic GLT-1 glutamate transport and late-LTP

星形胶质细胞 GLT-1 谷氨酸转运增加与晚期 LTP 之间的关系

阅读:5
作者:Juan D Pita-Almenar, Shengwei Zou, Costa M Colbert, Arnold Eskin

Abstract

Na⁺-dependent high-affinity glutamate transporters have important roles in the maintenance of basal levels of glutamate and clearance of glutamate during synaptic transmission. Interestingly, several studies have shown that basal glutamate transport displays plasticity. Glutamate uptake increases in hippocampal slices during early long-term potentiation (E-LTP) and late long-term potentiation (L-LTP). Four issues were addressed in this research: Which glutamate transporter is responsible for the increase in glutamate uptake during L-LTP? In what cell type in the hippocampus does the increase in glutamate uptake occur? Does a single type of cell contain all the mechanisms to respond to an induction stimulus with a change in glutamate uptake? What role does the increase in glutamate uptake play during L-LTP? We have confirmed that GLT-1 is responsible for the increase in glutamate uptake during L-LTP. Also, we found that astrocytes were responsible for much, if not all, of the increase in glutamate uptake in hippocampal slices during L-LTP. Additionally, we found that cultured astrocytes alone were able to respond to an induction stimulus with an increase in glutamate uptake. Inhibition of basal glutamate uptake did not affect the induction of L-LTP, but inhibition of the increase in glutamate uptake did inhibit both the expression of L-LTP and induction of additional LTP. It seems likely that heightened glutamate transport plays an ongoing role in the ability of hippocampal circuitry to code and store information.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。