Assembly, growth and conductive properties of tellurium nanorods produced by Rhodococcus aetherivorans BCP1

Rhodococcus aetherivorans BCP1产生的碲纳米棒的组装、生长和导电特性

阅读:9
作者:Alessandro Presentato, Elena Piacenza, Ali Darbandi, Max Anikovskiy, Martina Cappelletti, Davide Zannoni, Raymond J Turner

Abstract

Tellurite (TeO32-) is a hazardous and toxic oxyanion for living organisms. However, several microorganisms can bioconvert TeO32- into the less toxic form of elemental tellurium (Te0). Here, Rhodococcus aetherivorans BCP1 resting (non-growing) cells showed the proficiency to produce tellurium-based nanoparticles (NPs) and nanorods (NRs) through the bioconversion of TeO32-, depending on the oxyanion initial concentration and time of cellular incubation. Te-nanostructures initially appeared in the cytoplasm of BCP1 cells as spherical NPs, which, as the exposure time increased, were converted into NRs. This observation suggested the existence of an intracellular mechanism of TeNRs assembly and growth that resembled the chemical surfactant-assisted process for NRs synthesis. The TeNRs produced by the BCP1 strain showed an average length (>700 nm) almost doubled compared to those observed in other studies. Further, the biogenic TeNRs displayed a regular single-crystalline structure typically obtained for those chemically synthesized. The chemical-physical characterization of the biogenic TeNRs reflected their thermodynamic stability that is likely derived from amphiphilic biomolecules present in the organic layer surrounding the NRs. Finally, the biogenic TeNRs extract showed good electrical conductivity. Thus, these findings support the suitability of this strain as eco-friendly biocatalyst to produce high quality tellurium-based nanomaterials exploitable for technological purposes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。