Pharmacological inhibition of PLK2 kinase activity mitigates cognitive decline but aggravates APP pathology in a sex-dependent manner in APP/PS1 mouse model of Alzheimer's disease

在阿尔茨海默病APP/PS1小鼠模型中,PLK2激酶活性的药理学抑制可减轻认知衰退,但会以性别依赖的方式加剧APP病理。

阅读:1
作者:Laura Martínez-Drudis ,Morgan Bérard ,Dylan Musiol ,Serge Rivest ,Abid Oueslati

Abstract

Converging evidence from clinical and experimental studies suggest the potential significance of Polo-like kinase 2 (PLK2) in regulating the phosphorylation and toxicity of the Alzheimer's disease (AD)-related protein, amyloid precursor protein (APP). These findings have prompted various experimental trials aimed at inhibiting PLK2 kinase activity in different transgenic mouse models of AD. While positive impacts on cognitive decline were reported in these studies, the cellular effects remained controversial. In the present study, we sought to assess the cognitive and cellular consequences of chronic PLK2 inhibitor treatment in the APP/PS1 transgenic mouse model of AD. First, we confirmed that inhibiting PLK2 prevented cognitive decline in a sex-dependent manner, particularly by enhancing working memory in male APP/PS1 mice. Surprisingly, cellular analysis revealed that treatment with PLK2 inhibitor increased the load of amyloid plaques and elevated levels of soluble amyloid β (Aβ) 40 and Aβ42 in the cortex, as well as insoluble Aβ42 in the hippocampus of female mice, without affecting APP pathology in males. These results underscore the potential of PLK2 inhibition to mitigate cognitive symptoms in males. However, paradoxically, it intensifies amyloid pathology in females by enhancing APP amyloidogenic processing, creating a controversial aspect to its therapeutic impact. Overall, these data highlight the sex-dependent nature of the effects of PLK2 inhibition, which may also be influenced by the genetic background of the transgenic mouse model utilized.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。