Biodegradation of Choline NTF2 by Pantoea agglomerans in Different Osmolarity. Characterization and Environmental Implications of the Produced Exopolysaccharide

不同渗透压下成团泛菌对胆碱 NTF2 的生物降解。产生的胞外多糖的表征和环境影响

阅读:5
作者:Abrusci Concepción, Amils Ricardo, Sánchez-León Enrique

Abstract

A specific microorganism, Pantoea agglomerans uam8, was isolated from the ionic liquid (IL) Choline NTF2 and identified by molecular biology. A biodegradation study was performed at osmolarity conditions (0.2, 0.6, 1.0 M). These had an important influence on the growth of the strain, exopolysaccharide (EPS) production, and biodegradation (1303 mg/L max production and 80% biodegradation at 0.6 M). These conditions also had an important influence on the morphology of the strain and its EPSs, but not in the chemical composition. The EPS (glucose, mannose and galactose (6:0.5:2)) produced at 0.6 M was further characterized using different techniques. The obtained EPSs presented important differences in the behavior of the emulsifying activity for vegetable oils (olive (86%), sunflower (56%) and coconut (90%)) and hydrocarbons (diesel (62%), hexane (60%)), and were compared with commercial emulsifiers. The EPS produced at 0.6 M had the highest emulsifying activity overall. This EPS did not show cytotoxicity against the tested cell line (<20%) and presented great advantages as an antioxidant (1,1-diphenyl-2-picryl-hydrazyl radical (DPPH) (85%), hydroxyl radical (OH) (99%), superoxide anion (O2-) (94%), chelator (54%), and antimicrobial product (15 mm). The osmolarity conditions directly affected the capacity of the strain to biodegrade IL and the subsequently produced EPS. Furthermore, the EPS produced at 0.6 M has potential for environmental applications, such as the removal of hazardous materials by emulsification, whilst resulting in positive health effects such as antioxidant activity and non-toxicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。