Differential Serum Peptidomics Reveal Multi-Marker Models That Predict Breast Cancer Progression

差异血清肽组学揭示预测乳腺癌进展的多标志物模型

阅读:8
作者:Adhari AlZaabi, Stephen Piccolo, Steven Graves, Marc Hansen

Abstract

Here, we assess how the differential expression of low molecular weight serum peptides might predict breast cancer progression with high confidence. We apply an LC/MS-MS-based, unbiased 'omics' analysis of serum samples from breast cancer patients to identify molecules that are differentially expressed in stage I and III breast cancer. Results were generated using standard and machine learning-based analytical workflows. With standard workflow, a discovery study yielded 65 circulating biomarker candidates with statistically significant differential expression. A second study confirmed the differential expression of a subset of these markers. Models based on combinations of multiple biomarkers were generated using an exploratory algorithm designed to generate greater diagnostic power and accuracy than any individual markers. Individual biomarkers and the more complex multi-marker models were then tested in a blinded validation study. The multi-marker models retained their predictive power in the validation study, the best of which attained an AUC of 0.84, with a sensitivity of 43% and a specificity of 88%. One of the markers with m/z 761.38, which was downregulated, was identified as a fibrinogen alpha chain. Machine learning-based analysis yielded a classifier that correctly categorizes every subject in the study and demonstrates parameter constraints required for high confidence in classifier output. These results suggest that serum peptide biomarker models could be optimized to assess breast cancer stage in a clinical setting.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。