A bitter flavonoid gum from Dorema aucheri accelerate wound healing in rats: Involvement of Bax/HSP 70 and hydroxyprolin mechanisms

Dorema aucheri 中的苦味黄酮类胶可加速大鼠伤口愈合:Bax/HSP 70 和羟脯氨酸机制的参与

阅读:16
作者:Khaled Abdul-Aziz Ahmed, Ahmed A J Jabbar, Mohammed M Hussein M Raouf, Ayman M Al-Qaaneh, Ramzi A Mothana, Abdullah R Alanzi, Fuad Othman Abdullah, Rawaz Rizgar Hassan, Mahmood Ameen Abdulla, Musher Ismael Saleh, Sidgi Hasson0

Background

Dorema aucheri gum (DAG) is a bitter flavonoid gum widely used for numerous medicinal purposes including wound recovery. The present work investigates the acute toxicity and wound-healing effects of DAG in excisional skin injury in rats. Materials and

Conclusion

The present wound contraction by DAG might be linked with the modulatory effect of its phytochemicals (polysaccharides, flavonoids, and phenolic) on the cellular mechanisms, which justify their folkloric use and provokes further investigation as therapeutic drug additives for wound contraction.

Methods

Sprague Dawley rats (24) were clustered into four groups, each rat had a full-thickness excisional dorsal neck injury (2.00 cm) and addressed with 0.2 mL of the following treatments for 15 days: Group A (vehicle), rats addressed with normal saline; Group B, rats received intrasite gel; C and D, rats addressed with 250 and 500 mg/kg of DAG, respectively.

Results

The results revealed the absence of any toxic signs in rats who received oral dosages of 2 and 5 g/kg of DAG. Wound healing was significantly accelerated following DAG treatments indicated by smaller open areas and higher wound contraction percentages compared to vehicle rats. Histological evaluation revealed higher fibroblast formation, collagen deposition, and noticeably lower inflammatory cell infiltration in granulated skin tissues of DAG-addressed rats compared to vehicle rats. DAG treatment caused significant modulation of immunohistochemical proteins (decreased Bax and increased HSP 70) and inflammatory mediators (reduced TNF-α, IL-6, and magnified IL-10), which were significantly varied compared to vehicle rats. Moreover, topical DAG treatment led to significant upregulation of the hydroxyproline (HDX) (collagen) and antioxidant content. At the same time, decreased the lipid peroxidation (MDA) levels in healed tissues obtained from DAG-treated rats.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。