Essential roles of HDAC1 and 2 in lineage development and genome-wide DNA methylation during mouse preimplantation development

HDAC1 和 2 在小鼠植入前发育过程中谱系发育和全基因组 DNA 甲基化中的重要作用

阅读:8
作者:Panpan Zhao, Huanan Wang, Han Wang, Yanna Dang, Lei Luo, Shuang Li, Yan Shi, Lefeng Wang, Shaohua Wang, Jesse Mager, Kun Zhang

Abstract

Epigenetic modifications, including DNA methylation and histone modifications, are reprogrammed considerably following fertilization during mammalian early embryonic development. Incomplete epigenetic reprogramming is a major factor leading to poor developmental outcome in embryos generated by assisted reproductive technologies, such as somatic cell nuclear transfer. However, the role of histone modifications in preimplantation development is poorly understood. Here, we show that co-knockdown (cKD) of Hdac1 and 2 (but not individually) resulted in developmental failure during the morula to blastocyst transition. This outcome was also confirmed with the use of small-molecule HDAC1/2-specific inhibitor FK228. We observed reduced cell proliferation and increased incidence of apoptosis in cKD embryos, which were likely caused by increased acetylation of TRP53. Importantly, both RNA-seq and immunostaining analysis revealed a failure of lineage specification to generate trophectoderm and pluripotent cells. Among many gene expression changes, a substantial decrease of Cdx2 may be partly accounted for by the aberrant Hippo pathway occurring in cKD embryos. In addition, we observed an increase in global DNA methylation, consistent with increased DNA methyltransferases and UHRF1. Interestingly, deficiency of RBBP4 and 7 (both are core components of several HDAC1/2-containing epigenetic complexes) results in similar phenotypes as those of cKD embryos. Overall, HDAC1 and 2 play redundant functions required for lineage specification, cell viability and accurate global DNA methylation, each contributing to critical developmental programmes safeguarding a successful preimplantation development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。