High-throughput Peptide epitope mapping using carbon nanotube field-effect transistors

使用碳纳米管场效应晶体管进行高通量肽表位图谱分析

阅读:4
作者:Steingrimur Stefansson, Martha Knight, Hena H Kwon, Lára A Stefansson, Saeyoung Nate Ahn

Abstract

Label-free and real-time detection technologies can dramatically reduce the time and cost of pharmaceutical testing and development. However, to reach their full promise, these technologies need to be adaptable to high-throughput automation. To demonstrate the potential of single-walled carbon nanotube field-effect transistors (SWCNT-FETs) for high-throughput peptide-based assays, we have designed circuits arranged in an 8 × 12 (96-well) format that are accessible to standard multichannel pipettors. We performed epitope mapping of two HIV-1 gp160 antibodies using an overlapping gp160 15-mer peptide library coated onto nonfunctionalized SWCNTs. The 15-mer peptides did not require a linker to adhere to the non-functionalized SWCNTs, and binding data was obtained in real time for all 96 circuits. Despite some sequence differences in the HIV strains used to generate these antibodies and the overlapping peptide library, respectively, our results using these antibodies are in good agreement with known data, indicating that peptides immobilized onto SWCNT are accessible and that linear epitope mapping can be performed in minutes using SWCNT-FET.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。