Microstructure and Mechanical Properties of TiB2/AlSi7Mg0.6 Composites Fabricated by Wire and Arc Additive Manufacturing Based on Cold Metal Transfer (WAAM-CMT)

基于冷金属转移 (WAAM-CMT) 的线材和电弧增材制造 TiB2/AlSi7Mg0.6 复合材料的微观组织和力学性能

阅读:4
作者:Qingfeng Yang, Cunjuan Xia, Haowei Wang, Mingyang Zhou, Shixin Gao, Bingjin Li, Shichao Liu

Abstract

Wire and arc additive manufacturing based on cold metal transfer (WAAM-CMT), as a kind of clean and advanced technology, has been widely researched recently. It was analyzed in detail for the microstructure and mechanical properties of WAAM-CMT printed TiB2/AlSi7Mg0.6 samples fore-and-aft heat treatment in this study. Compared with the grain size of casted AlSi7Mg0.6 samples (252 μm), the grain size of WAAM-CMT printed AlSi7Mg0.6 samples (53.4 μm) was refined, showing that WAAM-CMT process could result in significant grain refinement. Besides, the grain size of WAAM-CMT printed TiB2/AlSi7Mg0.6 samples was about 35 μm, revealing that the addition of TiB2 particles played a role in grain refinement. Nevertheless, the grain size distribution was not uniform, showing a mixture of fine grain and coarse grain, and the mechanical properties were anisotropic of the as-printed samples. This study shows that T6 heat treatment is an efficient way to improve the nonuniform microstructure and eliminate the anisotropy in mechanical properties.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。