Phosphoproteomics reveals content and signaling differences between neonatal and adult platelets

磷酸化蛋白质组学揭示新生儿和成人血小板含量和信号传导的差异

阅读:10
作者:Christopher S Thom, Patricia Davenport, Hossein Fazelinia, Zhi-Jian Liu, Haorui Zhang, Hua Ding, Jennifer Roof, Lynn A Spruce, Harry Ischiropoulos, Martha Sola-Visner

Conclusions

Using state-of-the-art mass spectrometry, our findings expanded the known neonatal platelet proteome and identified important differences in protein content and phosphorylation compared with adult platelets. These developmental differences suggested enhanced immune functions for adult platelets and presence of a molecular machinery related to platelet activation. These findings are important to understanding mechanisms underlying key platelet functions as well as the harmful effects of adult platelet transfusions given to preterm infants.

Methods

We isolated resting umbilical cord blood-derived platelets from healthy full term neonates (n=9) and resting blood platelets from healthy adults (n=7), and compared protein and phosphoprotein contents using data independent acquisition mass spectrometry.

Objective

Recent clinical studies have shown that transfusions of adult platelets increase morbidity and mortality in preterm infants. Neonatal platelets are hyporesponsive to agonist stimulation, and emerging evidence suggests developmental differences in platelet immune functions. This study was designed to compare the proteome and phosphoproteome of resting adult and neonatal platelets.

Results

We identified 4745 platelet proteins with high confidence across all samples. Adult and neonatal platelets clustered separately by principal component analysis. Adult platelets were significantly enriched for immunomodulatory proteins, including β2 microglobulin and CXCL12, whereas neonatal platelets were enriched for ribosomal components and proteins involved in metabolic activities. Adult platelets were enriched for phosphorylated GTPase regulatory enzymes and proteins participating in trafficking, which may help prime them for activation and degranulation. Neonatal platelets were enriched for phosphorylated proteins involved in insulin growth factor signaling. Conclusions: Using state-of-the-art mass spectrometry, our findings expanded the known neonatal platelet proteome and identified important differences in protein content and phosphorylation compared with adult platelets. These developmental differences suggested enhanced immune functions for adult platelets and presence of a molecular machinery related to platelet activation. These findings are important to understanding mechanisms underlying key platelet functions as well as the harmful effects of adult platelet transfusions given to preterm infants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。