Influence of Catalyst Content and Epoxy/Carboxylate Ratio on Isothermal Creep of Epoxy Vitrimers

催化剂含量和环氧/羧酸盐比对环氧 Vitrimers 等温蠕变的影响

阅读:5
作者:Barbara Palmieri, Fabrizia Cilento, Eugenio Amendola, Teodoro Valente, Stefania Dello Iacono, Michele Giordano, Alfonso Martone

Abstract

In the present work, a commercial epoxy based on epoxy anhydride and tertiary amine was modified by a metallic catalyst (Zn2+) to induce vitrimeric behavior by promoting the transesterification reaction. The effect of two different epoxy/acid ratios (1 and 0.6) at two different zinc acetate amounts (Zn(Ac)2) on the thermomechanical and viscoelastic performances of the epoxy vitrimers were investigated. Creep experiments showed an increase in molecular mobility above the critical "Vitrimeric" temperature (Tv) of 170 °C proportionally to the amount of Zn(Ac)2. A procedure based on Burger's model was set up to investigate the effect of catalyst content on the vitrimer ability to flow as the effect of the dynamic exchange reaction. The analysis showed that in the case of a balanced epoxy/acid formulation, the amount of catalyst needed for promoting molecular mobility is 5%. This system showed a value of elastic modulus and dynamic viscosity at 170 °C of 9.50 MPa and 2.23 GPas, respectively. The material was easily thermoformed in compression molding, paving the way for the recyclability and weldability of the thermoset system.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。