Assessing the Impact of Bedaquiline, Clofazimine, and Linezolid on Mycobacterial Genome Integrity

评估贝达喹啉、氯法齐明和利奈唑胺对分枝杆菌基因组完整性的影响

阅读:6
作者:Dániel Molnár, Éva Viola Surányi, Nikoletta Gálik, Judit Tóth, Rita Hirmondó

Abstract

Tuberculosis (TB) presents significant medical challenges, largely due to the genetic diversity of Mycobacterium tuberculosis, which enhances the resilience and resistance of the pathogen to first-line treatments. In response to the global rise of drug-resistant TB, second-line antitubercular drugs like bedaquiline (BDQ), linezolid (LZD), and clofazimine (CFZ) have become critical treatment options. Understanding the molecular changes these drugs induce is essential for optimizing TB therapy. To contribute to this effort, we investigated their impact on genome maintenance and stability using Mycobacterium smegmatis as a model organism. Using mutation accumulation assays and whole-genome sequencing, we found that the second-line antibiotics did not significantly increase mutation rates, unlike the positive control UV treatment. However, upon BDQ treatment, we detected mutations in transporter proteins and transcription factors without any increase in the minimal inhibitory concentration. Additionally, BDQ and CFZ were found to alter DNA repair pathways and reduce cellular dNTP levels, particularly CFZ, which depleted dGTP, impacting DNA synthesis. CFZ also upregulated DNA repair enzymes, enhancing error-free repairs. Despite minimal mutagenic effects, both drugs displayed distinct impacts on cellular mechanisms, suggesting additional modes of action.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。