Zinc regulation of transcriptional activity during retinoic acid-induced neuronal differentiation

锌在视黄酸诱导的神经元分化过程中对转录活性的调节

阅读:5
作者:Deborah R Morris, Cathy W Levenson

Abstract

Zinc deficiency impairs the proliferation and differentiation of stem cells in the central nervous system that participate in neurogenesis. To examine the molecular mechanisms responsible for the role of this essential nutrient in neuronal precursor cells and neuronal differentiation, we identified zinc-dependent changes in the DNA-binding activity of zinc finger proteins and other transcription factors in proliferating human Ntera-2 neuronal precursor cells undergoing retinoic acid-stimulated differentiation into a neuronal phenotype. We found that zinc deficiency altered binding activity of 28 transcription factors including retinoid X receptor (RXR) known to participate in neuronal differentiation. Alterations in zinc finger transcription factor activity were not simply the result of removal of zinc from these proteins during zinc deficiency, as the activity of other zinc-binding transcription factors such as the glucocorticoid receptor was increased by as much as twofold over zinc-adequate conditions, and nonzinc-binding transcription factors such as nuclear factor-1 and heat shock transcription factor-1 were increased by as much as fourfold over control. Western analysis did not detect significant decreases in total RXR protein abundance in neuronal precursors, suggesting that the decrease in DNA-binding activity was not simply the result of a reduction in RXR levels in neuronal precursor cells. Rather, use of a reporter gene construct containing retinoic acid response elements upstream from a luciferase coding sequence revealed that zinc deficiency results in decreased transcriptional activity of RXR and reductions in retinoic acid-mediated gene transcription during neuronal differentiation. These results show that zinc deficiency has implications for both developmental and adult neurogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。