Long Non-coding RNA SNHG12, a New Therapeutic Target, Regulates miR-199a-5p/Klotho to Promote the Growth and Metastasis of Intrahepatic Cholangiocarcinoma Cells

长链非编码RNA SNHG12作为新的治疗靶点调控miR-199a-5p/Klotho促进肝内胆管癌细胞生长和转移

阅读:5
作者:Hong-Guo Yang, Tian-Peng Wang, Sheng-An Hu, Chao-Zhou Hu, Cheng-Hang Jiang, Qiang He

Background

Small nucleolar RNA host gene 12 (SNHG12) is a newly identified long non-coding RNA (lncRNA) whose involvements have been explored in several cancers. Our study aimed to explore the functions of SNHG12 on intrahepatic cholangiocarcinoma (ICC) progression and its interaction with miR-199a-5p and Klotho.

Conclusion

Our findings indicated that SNHG12 inhibited cell proliferation and metastasis process of ICC cells through modulating the miR-199a-5p/Klotho axis and it is expected to become a potential therapeutic target for ICC.

Methods

RT-PCR was performed to examine the expressions of SNHG12, miR-199a-5p and Klotho in ICC cells. Cell counting kit-8 (CCK-8), colony formation assays and transwell assays were applied to analyze the proliferation, migration and invasion of ICC cells. Luciferase assays, RIP assays and RNA pull-down assays were carried out to demonstrate the direct binding relationships among SNHG12, miR-199a-5p and Klotho. The xenograft nude models were applied to test the effects of SNHG12 on ICC tumor growth.

Results

The expression of SNHG12 and Klotho was distinctly increased in ICC cells, while miR-199a-5p expressions were decreased. Functionally, the silence of SNHG12 inhibited the proliferation and metastasis of ICC cells, while miR-199a-5p overexpression exhibited an opposite result. Mechanistically, Knockdown of SNHG12 significantly suppressed the expressions of miR-199a-5p by sponging it, and then increased Klotho expression. The final in vivo experiments suggested that the silence of SNHG12 distinctly inhibited tumor growth.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。