Rac-deficient cerebellar granule neurons die before they migrate to the internal granule layer

缺乏 Rac 的小脑颗粒神经元在迁移到内部颗粒层之前死亡

阅读:3
作者:Kei-Ichi Katayama, Yi Zheng, Norimitsu Inoue

Abstract

Granule neurons are the most common cell type in the cerebellum. They are generated in the external granule layer and migrate inwardly, forming the internal granule layer. Small Rho GTPases play various roles during development of the nervous system and may be involved in generation, differentiation and migration of granule neurons. We deleted Rac1, a member of small Rho GTPases, by GFAP-Cre driver in cerebellar granule neurons and Bergmann glial cells. Rac1flox/flox; Cre mice showed impaired migration and slight reduction in the number of granule neurons in the internal granule layer. Deletion of both Rac1 and Rac3 resulted in almost complete absence of granule neurons. Rac-deficient granule neurons differentiated into p27 and NeuN-expressing post mitotic neurons, but died before migration to the internal granule layer. Loss of Rac3 has little effect on granule neuron development. Rac1flox/flox; Rac3+/-; Cre mice showed intermediate phenotype between Rac1flox/flox; Cre and Rac1flox/flox; Rac3-/-; Cre mice in both survival and migration of granule neurons. Rac3 itself seems to be unimportant in the development of the cerebellum, but has some roles in Rac1-deleted granule neurons. Conversely, overall morphology of Rac1+/flox; Rac3-/-; Cre cerebella was normal. One allele of Rac1 is therefore thought to be sufficient to promote development of cerebellar granule neurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。