Community Structure and Biodiversity of Active Microbes in the Deep South China Sea

南海深海活性微生物群落结构及生物多样性

阅读:7
作者:Taoran Yang, Yinghui He, Ming Yang, Zhaoming Gao, Jin Zhou, Yong Wang

Abstract

The deep ocean harbors a group of highly diversified microbes, while our understanding of the active microbes that are real contributors to the nutrient cycle remains limited. In this study, we report eukaryotic and prokaryotic communities in ~590 m and 1130 m depths using 16S and 18S rRNA Illumina reads (miTags) extracted from 15 metagenomes (MG) and 14 metatranscriptomes (MT). The metagenomic 16S miTags revealed the dominance of Gammaproteobacteria, Alphaproteobacteria, and Nitrososphaeria, while the metatranscriptomic 16S miTags were highly occupied by Gammaproteobacteria, Acidimicrobiia, and SAR324. The consistency of the active taxa between the two depths suggests the homogeneity of the functional microbial groups across the two depths. The eukaryotic microbial communities revealed by the 18S miTags of the metagenomic data are dominated by Polycystinea; however, they were almost all absent in the 18S metatranscriptomic miTags. The active eukaryotes were represented by the Arthropoda class (at 590 m depth), Dinophyceae, and Ciliophora classes. Consistent eukaryotic communities were also exhibited by the 18S miTags of the metatranscriptomic data of the two depths. In terms of biodiversity, the ACE and Shannon indices of the 590 m depth calculated using the 18S metatranscriptomic miTags were much higher than those of the 1130 m depth, while a reverse trend was shown for the indices based on the metagenomic data. Our study reports the active microbiomes functioning in the nutrient utilization and carbon cycle in the deep-sea zone, casting light on the quantification of the ecological processes occurring in the deep ocean.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。