Differentiation Potential of Mesenchymal Stem Cells Is Related to Their Intrinsic Mechanical Properties

间充质干细胞的分化潜能与其内在机械特性相关

阅读:5
作者:Ihn Han, Byung-Su Kwon, Hun-Kuk Park, Kyung Sook Kim

Conclusions

The differentiation ability of MSCs and the mechanical properties of the differentiated cells were closely linked. However, there were no significant correlations regarding changes in the mechanical properties between the nuclear region and the cytoplasm during differentiation.

Methods

A total of 3 different types of MSCs, namely bone marrow-derived MSCs (BMSCs), umbilical cord-derived MSCs (UCSCs), and adipose-derived MSCs (ADSCs) were evaluated. These 3 MSCs were individually differentiated into adipocytes and osteoblasts for 3 weeks. The mechanical properties of the MSCs and differentiated cells were determined by atomic force microscopy.

Purpose

The differentiation properties of stem cells are not yet fully understood due to their close association with multiple environmental and extrinsic factors. This study investigates the differentiation properties of mesenchymal stem cells (MSCs) and correlates them with their intrinsic mechanical properties.

Results

ADSCs showed the greatest ability to differentiate into adipocytes, followed by BMSCs and UCSCs. While UCSCs differentiated readily into osteoblasts, BMSCs and ADSCs were less likely to undergo this differentiation. UCSCs were the "hardest" cells, while ADSCs were the "softest." The cells differentiated from "hard" MSCs were stiffer than the cells differentiated from "soft" MSCs, irrespective of lineage specification. Conclusions: The differentiation ability of MSCs and the mechanical properties of the differentiated cells were closely linked. However, there were no significant correlations regarding changes in the mechanical properties between the nuclear region and the cytoplasm during differentiation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。