Conclusions
We thus generated a preclinical rat model using noninvasive focal MB + FUS. This method is histologically similar to actual petechial hemorrhages of the brain and allows the achievement of a physiologically resembling petechial hemorrhage. In the future, this method shall be considered as a useful animal model for studying the pathophysiology and treatment of petechial cerebral hemorrhages.
Methods
Here, we implemented a petechial hemorrhage using a novel technology, i.e., microbubble-assisted focused ultrasound (MB + FUS).
Results
This method increases the permeability of the blood-brain barrier by directly applying mechanical force to the vascular endothelial cells through cavitation of the microbubbles. Microbubble-enhanced cavitation has the advantage of controlling the degree and location of petechial hemorrhages. Conclusions: We thus generated a preclinical rat model using noninvasive focal MB + FUS. This method is histologically similar to actual petechial hemorrhages of the brain and allows the achievement of a physiologically resembling petechial hemorrhage. In the future, this method shall be considered as a useful animal model for studying the pathophysiology and treatment of petechial cerebral hemorrhages.
