Leucine-rich alpha-2-glycoprotein 1 deficiency suppresses ischemia-reperfusion injury-induced renal fibrosis

富含亮氨酸的 α-2-糖蛋白 1 缺乏可抑制缺血再灌注损伤引起的肾纤维化

阅读:4
作者:Naohito Okami, Hiromichi Wakui, Kengo Azushima, Tomohito Miyazawa, Eisuke Kubo, Shunichiro Tsukamoto, Mari Sotozawa, Shinya Taguchi, Shingo Urate, Kohei Ishiga, Sho Kinguchi, Tomohiko Kanaoka, Kouichi Tamura

Abstract

Ischemia reperfusion injury (IRI) is a major cause of acute kidney injury (AKI) and ultimately leads to renal fibrosis, primarily via the transforming growth factor-β (TGF-β) pathway. Leucine-rich alpha-2-glycoprotein 1 (LRG1), a novel modulator of the TGF-β pathway, has been implicated in the modulation of renal fibrosis by affecting the TGF-β/Smad3 signaling axis. However, the role of LRG1 in the transition from AKI to chronic kidney disease (CKD) remains unclear. This study aimed to investigate the functional role of LRG1 during the remodeling phase post-IRI. Unilateral IRI was induced in C57BL/6J wild-type (WT) mice and systemic LRG1 knockout (KO) mice. In C57BL/6J WT mice, renal LRG1 mRNA expression was significantly elevated on the ischemia/reperfusion side compared to the sham side over a 28-day period. In contrast, LRG1 KO mice demonstrated significantly reduced renal fibrosis compared to WT mice on postoperative day 28. Additionally, renal mRNA expression of TGF-β and associated pro-fibrotic genes was diminished in LRG1 KO mice compared to WT mice. Consequently, LRG1 KO mice exhibited attenuated IRI-induced chronic fibrosis. These findings indicate that LRG1 is involved in the pathogenesis of the transition from AKI to CKD and may be a potential therapeutic target.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。