Plant-associated halotolerant bacteria improving growth of Vicia faba L. Mariout-2 under salinity conditions

植物相关耐盐细菌促进蚕豆在盐度条件下的生长

阅读:4
作者:Dalia Wael, Yasser El-Amier, Wesameldin I A Saber, Ashraf Elsayed

Abstract

In this comprehensive investigation, we successfully isolated and characterized 40 distinct plant-associated halotolerant bacteria strains obtained from three halophytic plant species: Tamarix nilotica, Suaeda pruinosa, and Arthrocnemum macrostachyum. From this diverse pool of isolates, we meticulously selected five exceptional plant-associated halotolerant bacteria strains through a judiciously designed seed biopriming experiment and then identified molecularly. Bacillus amyloliquefaciens DW6 was isolated from A. macrostachyum. Three bacteria (Providencia rettgeri DW3, Bacillus licheniformis DW4, and Salinicoccus sesuvii DW5) were isolated for the first time from T. nilotica, S. pruinosa and S. pruinosa, respectively. Paenalcaligenes suwonensis DW7 was isolated for the first time from A. macrostachyum. These plant-associated halotolerant bacteria exhibited growth-promoting activities, including phosphate solubilization, nitrogen fixation, and production of bioactive compounds, i.e., ammonia, phytohormones, hydrogen cyanide, siderophores, and exopolysaccharides. A controlled laboratory experiment was conducted to reduce the detrimental impact of soil salinity. Vicia faba seedlings were inoculated individually or in mixtures by the five most effective plant-associated halotolerant bacteria to reduce the impact of salt stress and improve growth parameters. The growth parameters were significantly reduced due to the salinity stress in the control samples, compared to the experimental ones. The unprecedented novelty of our findings is underscored by the demonstrable efficacy of co-inoculation with these five distinct bacterial types as a pioneering bio-approach for countering the deleterious effects of soil salinity on plant growth. This study thus presents a remarkable contribution to the field of plant science and offers a promising avenue for sustainable agriculture in saline environments.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。