Controlled Solvent-Free Formation of Embedded PDMS-Derived Carbon Nanodomains with Tunable Fluorescence Using Selective Laser Ablation with A Low-Power CD Laser

使用低功率 CD 激光器进行选择性激光烧蚀,可控制无溶剂形成具有可调荧光的嵌入式 PDMS 衍生碳纳米域

阅读:6
作者:María José González-Vázquez, Mathieu Hautefeuille

Abstract

We present a study of the application of a single-step and solvent-free laser-based strategy to control the formation of polymer-derived fluorescent carbon nanodomains embedded in poly-dimethylsiloxane (PDMS) microchannels. A low-power, laser-induced microplasma was used to produce a localised combustion of a PDMS surface and confine nanocarbon byproducts within the exposed microregions. Patterns with on-demand geometries were achieved under dry environmental conditions thanks to a low-cost 3-axis CD-DVD platform motorised in a selective laser ablation fashion. The high temperature required for combustion of PDMS was achieved locally by strongly focusing the laser spot on the desired areas, and the need for high-power laser was bypassed by coating the surface with an absorbing carbon additive layer, hence making the etching of a transparent material possible. The simple and repeatable fabrication process and the spectroscopic characterisation of resulting fluorescent microregions are reported. In situ Raman and fluorescence spectroscopy were used to identify the nature of the nanoclusters left inside the modified areas and their fluorescence spectra as a function of excitation wavelength. Interestingly, the carbon nanodomains left inside the etched micropatterns showed a strong dependency on the additive materials and laser energy that were used to achieve the incandescence and etch microchannels on the surface of the polymer. This dependence on the lasing conditions indicates that our cost-effective laser ablation technique may be used to tune the nature of the polymer-derived nanocarbons, useful for photonics applications in transparent silicones in a rapid-prototyping fashion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。