miR-542-3p-Targeted PDE4D Regulates cAMP/PKA Signaling Pathway and Improves Cardiomyocyte Injury

miR-542-3p靶向PDE4D调控cAMP/PKA信号通路改善心肌细胞损伤

阅读:11
作者:Yu Lu, HuaJun Wu, Min Deng, MingDe Huang, HaiHua Pan, PingShao Yang

Conclusion

The miR-542-3p can negatively regulate PDE4D protein expression and attenuate cardiomyocyte injury through a mechanism related to the activation of the cAMP/PKA signaling pathway.

Methods

A cardiomyocyte hypoxia/reoxygenation model was established. The expression levels of miR-542-3p and PDE4D were detected using qRT-PCR; the luciferase reporter assay system was used to detect the targeting relationship between miR-542-3p and PDE4D; overexpressing miR-542-3p was transfected into cardiomyocytes, and ROS release was detected by immunofluorescence while cellular apoptosis was detected by TUNEL; and the western blot assay was applied to detect the expression of PDE4D, phosphorylated protein kinase A (p-PKA), and phosphorylated cyclic adenosine monophosphate (cAMP) response element-binding protein (p-CREB).

Objective

To investigate the protective effect of miR-542-3p on cardiomyocyte injury and related mechanisms.

Results

Compared with the control group, the miR-542-3p expression level was decreased and the PDE4D expression level was increased in the cardiomyocyte hypoxia/reoxygenation model group. The dual-luciferase reporter assay system confirmed that miR-542-3p could target and regulate PDE4D; the transfection with cardiomyocytes using the overexpressing miR-542-3p could downregulate PDE4D expression, attenuate ROS release during cardiomyocyte injury, and reduce cellular apoptosis rate, while upregulating the expression of p-PKA and p-CREB.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。