Optimizing Differentiation Protocols for Producing Dopaminergic Neurons from Human Induced Pluripotent Stem Cells for Tissue Engineering Applications: Supplementary Issue: Stem Cell Biology

优化分化方案,从人类诱导性多能干细胞产生多巴胺能神经元,用于组织工程应用:补充问题:干细胞生物学

阅读:6
作者:Meghan Robinson, Suk-Yu Yau, Lin Sun, Nicole Gabers, Emma Bibault, Brian R Christie, Stephanie M Willerth

Abstract

Parkinson's disease (PD) is a neurodegenerative disorder that results when the dopaminergic neurons (DNs) present in the substantia nigra necessary for voluntary motor control are depleted, making patients with this disorder ideal candidates for cell replacement therapy. Human induced pluripotent stem cells (hiPSCs), obtained by reprogramming adult cells, possess the properties of pluripotency and immortality while enabling the possibility of patient-specific therapies. An effective cell therapy for PD requires an efficient, defined method of DN generation, as well as protection from the neuroinflammatory environment upon engraftment. Although similar in pluripotency to human embryonic stem cells (hESCs), hiPSCs differentiate less efficiently into neuronal subtypes. Previous work has shown that treatment with guggulsterone can efficiently differentiate hESCs into DNs. Our work shows that guggulsterone is able to derive DNs from hiPSCs with comparable efficiency, and furthermore, this differentiation can be achieved inside three-dimensional fibrin scaffolds that could enhance cell survival upon engraftment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。