The use of human-derived feeder layers for the cultivation of transplantable human epidermal cell sheet to repair second degree burn wounds

使用人类来源的饲养层培养可移植的人类表皮细胞片来修复二度烧伤伤口

阅读:4
作者:Zhang Mingqi, Wang Le, Zheng Yuqiang, Li Na, He Wei, Wang Zhuoshi

Conclusions

Human-derived feeder cells are suitable for cultivation of human-ECS, avoiding pathogen transmission. Human-ECS could enhance second-degree burn wound healing, and its promoting effect involved secreting a variety of cytokines to regulate tissue reparative process.

Methods

Human epidermal keratinocytes and fibroblasts were isolated from foreskin tissue and were co-cultured to manufacture human-ECS. The cell morphology was monitored with phase-contrast microscopy, the stem cell markers were assessed by flow cytometry, and by colony-forming efficiency (CFE) assay. The structure of human-ECS was observed by hematoxylin and eosin staining. Expression of cytokines in human-ECS was confirmed by enzyme-linked immunosorbent assay. Second-degree burn wounds were created on the dorsal of miniature pig to evaluate the effect of oil gauze, oil gauze combined with commercial epidermal growth factor (EGF) cream, and oil gauze combined with human-ECS. Wound healing rate, histological examination, and Masson staining were measured to observe the wound repair efficacy. Real-time PCR and Western blot were utilized to detect the expression level of EGF and interleukin 6 (IL-6).

Results

Stratified human-ECS with 6-7 layers of epidermal cells was successfully cultivated with human-derived feeder cells, in which epidermal cell highly expressed CD49f and CFE was 3% ± 0.45%. Application of human-ECS induced a higher wound healing rate than commerical EGF cream and oil gauze control. The expression of EGF in human-ECS group was higher than those in the other groups; however, the expression of IL-6 was significantly decreased at day 14 by human-ECS treatment group. Conclusions: Human-derived feeder cells are suitable for cultivation of human-ECS, avoiding pathogen transmission. Human-ECS could enhance second-degree burn wound healing, and its promoting effect involved secreting a variety of cytokines to regulate tissue reparative process.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。