Visible Light Trapping against Charge Recombination in FeOx-TiO2 Photonic Crystal Photocatalysts

FeOx-TiO2 光子晶体光催化剂中可见光捕获以防止电荷复合

阅读:6
作者:Martha Pylarinou, Alexia Toumazatou, Elias Sakellis, Evangelia Xenogiannopoulou, Spiros Gardelis, Nikos Boukos, Athanasios Dimoulas, Vlassis Likodimos

Abstract

Tailoring metal oxide photocatalysts in the form of heterostructured photonic crystals has spurred particular interest as an advanced route to simultaneously improve harnessing of solar light and charge separation relying on the combined effect of light trapping by macroporous periodic structures and compositional materials' modifications. In this work, surface deposition of FeOx nanoclusters on TiO2 photonic crystals is investigated to explore the interplay of slow-photon amplification, visible light absorption, and charge separation in FeOx-TiO2 photocatalytic films. Photonic bandgap engineered TiO2 inverse opals deposited by the convective evaporation-induced co-assembly method were surface modified by successive chemisorption-calcination cycles using Fe(III) acetylacetonate, which allowed the controlled variation of FeOx loading on the photonic films. Low amounts of FeOx nanoclusters on the TiO2 inverse opals resulted in diameter-selective improvements of photocatalytic performance on salicylic acid degradation and photocurrent density under visible light, surpassing similarly modified P25 films. The observed enhancement was related to the combination of optimal light trapping and charge separation induced by the FeOx-TiO2 interfacial coupling. However, an increase of the FeOx loading resulted in severe performance deterioration, particularly prominent under UV-Vis light, attributed to persistent surface recombination via diverse defect d-states.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。