Deletion of the p66Shc longevity gene reduces systemic and tissue oxidative stress, vascular cell apoptosis, and early atherogenesis in mice fed a high-fat diet

删除 p66Shc 长寿基因可降低高脂饮食小鼠的全身和组织氧化应激、血管细胞凋亡和早期动脉粥样硬化形成

阅读:9
作者:Claudio Napoli, Ines Martin-Padura, Filomena de Nigris, Marco Giorgio, Gelsomina Mansueto, Pasquale Somma, Mario Condorelli, Giacomo Sica, Gaetano De Rosa, PierGiuseppe Pelicci

Abstract

Several experimental and clinical studies have shown that oxidized low-density lipoprotein and oxidation-sensitive mechanisms are central in the pathogenesis of vascular dysfunction and atherogenesis. Here, we have used p66(Shc-/-) and WT mice to investigate the effects of high-fat diet on both systemic and tissue oxidative stress and the development of early vascular lesions. To date, the p66(Shc-/-) mouse is the unique genetic model of increased resistance to oxidative stress and prolonged life span in mammals. Computer-assisted image analysis revealed that chronic 21% high-fat treatment increased the aortic cumulative early lesion area by approximately 21% in WT mice and only by 3% in p66(Shc-/-) mice. Early lesions from p66(Shc-/-) mice had less content of macrophage-derived foam cells and apoptotic vascular cells, in comparison to the WT. Furthermore, in p66(Shc-/-) mice, but not WT mice, we found a significant reduction of systemic and tissue oxidative stress (assessed by isoprostanes, plasma low-density lipoprotein oxidizability, and the formation of arterial oxidation-specific epitopes). These results support the concept that p66(Shc-/-) may play a pivotal role in controlling systemic oxidative stress and vascular diseases. Therefore, p66(Shc) might represent a molecular target for therapies against vascular diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。