Hippocampal growth hormone modulates relational memory and the dendritic spine density in CA1

海马生长激素调节关系记忆和 CA1 中的树突棘密度

阅读:5
作者:Kamilla G Haugland, Anniken Olberg, Andreas Lande, Kirsten B Kjelstrup, Vegard H Brun

Abstract

Growth hormone (GH) deficiency is associated with cognitive decline which occur both in normal aging and in endocrine disorders. Several brain areas express receptors for GH although their functional role is unclear. To determine how GH affects the capacity for learning and memory by specific actions in one of the key areas, the hippocampus, we injected recombinant adeno-associated viruses (rAAVs) in male rats to express green fluorescent protein (GFP) combined with either GH, antagonizing GH (aGH), or no hormone, in the dorsal CA1. We found that aGH disrupted memory in the Morris water maze task, and that aGH treated animals needed more training to relearn a novel goal location. In a one-trial spontaneous location recognition test, the GH treated rats had better memory performance for object locations than the two other groups. Histological examinations revealed that GH increased the dendritic spine density on apical dendrites of CA1, while aGH reduced the spine density. GH increased the relative amount of immature spines, while aGH decreased the same amount. Our results imply that GH is a neuromodulator with strong influence over hippocampal plasticity and relational memory by mechanisms involving modulation of dendritic spines. The findings are significant to the increasing aging population and GH deficiency patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。