Spider Origami: Folding Principle of Jumping Spider Leg Joints for Bioinspired Fluidic Actuators

蜘蛛折纸:跳跃蜘蛛腿关节的折叠原理,用于仿生流体执行器

阅读:5
作者:Chantal Göttler, Karin Elflein, Roland Siegwart, Metin Sitti

Abstract

Jumping spiders (Phidippus regius) are known for their ability to traverse various terrains and have targeted jumps within the fraction of a second to catch flying preys. Different from humans and insects, spiders use muscles to flex their legs, and hydraulic actuation for extension. By pressurizing their inner body fluid, they can achieve fast leg extensions for running and jumping. Here, the working principle of the articular membrane covering the spider leg joint pit is investigated. This membrane is highly involved in walking, grasping, and jumping motions. Hardness and stiffness of the articular membrane is studied using nanoindentation tests and preparation methods for scanning electron microscopy and histology are developed to give detailed information about the inner and outer structure of the leg joint and its membrane. Inspired by the stroller umbrella-like folding mechanism of the articular membrane, a robust thermoplastic polyurethane-based rotary semifluidic actuator is demonstrated, which shows increased durability, achieves working angles over 120°, produces high torques which allows lifts over 100 times of its own weight and jumping abilities. The developed actuator can be used for future grasping tasks, safe human-robot interactions and multilocomotion ground robot applications, and it can shed light into spider locomotion-related questions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。