Autism-associated mutation in Hevin/Sparcl1 induces endoplasmic reticulum stress through structural instability

Hevin/Sparcl1基因中与自闭症相关的突变通过结构不稳定诱导内质网应激

阅读:2
作者:Takumi Taketomi ,Takunori Yasuda ,Rikuri Morita ,Jaehyun Kim ,Yasuteru Shigeta ,Cagla Eroglu ,Ryuhei Harada ,Fuminori Tsuruta

Abstract

Hevin is a secreted extracellular matrix protein that is encoded by the SPARCL1 gene. Recent studies have shown that Hevin plays an important role in regulating synaptogenesis and synaptic plasticity. Mutations in the SPARCL1 gene increase the risk of autism spectrum disorder (ASD). However, the molecular basis of how mutations in SPARCL1 increase the risk of ASD is not been fully understood. In this study, we show that one of the SPARCL1 mutations associated with ASD impairs normal Hevin secretion. We identified Hevin mutants lacking the EF-hand motif through analyzing ASD-related mice with vulnerable spliceosome functions. Hevin deletion mutants accumulate in the endoplasmic reticulum (ER), leading to the activation of unfolded protein responses. We also found that a single amino acid substitution of Trp647 with Arg in the EF-hand motif associated with a familial case of ASD causes a similar phenotype in the EF-hand deletion mutant. Importantly, molecular dynamics (MD) simulation revealed that this single amino acid substitution triggers exposure of a hydrophobic amino acid to the surface, increasing the binding of Hevin with molecular chaperons, BIP. Taken together, these data suggest that the integrity of the EF-hand motif in Hevin is crucial for proper folding and that ASD-related mutations impair the export of Hevin from the ER. Our data provide a novel mechanism linking a point mutation in the SPARCL1 gene to the molecular and cellular characteristics involved in ASD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。