Effect of early photostimulation at 15-weeks of age and everyday spin feeding on broiler breeder performance

15 周龄早期光刺激和每日旋转喂养对肉种鸡生产性能的影响

阅读:4
作者:A P Benson, R H Blocher, Z R Jarrell, C K Meeks, M B Habersang, J L Wilson, A J Davis

Abstract

To prevent broiler breeders from growing too quickly and becoming too large for optimum reproduction, their dietary intake is restricted. While current restricted feeding programs, such as skip-a-day feeding (SAD), improve the economic efficiency of broiler breeder operations, this management practice impacts bird welfare. There is an interest in finding strategies that could reduce the impact of feed restriction during broiler breeder rearing. This research investigated the effects of feeding pullets on an advanced growth curve for early photostimulation at 15 wk (15P) or standard growth curve for photostimulation at 21 wk (21P), using either an every-day-spin feeding program (EDS) or SAD feeding, on the reproductive parameters of broiler breeder hens in a 2 × 2 factorial arrangement. Overall, advancing the growth curve (15P) decreased blood corticosterone levels compared to 21P, but EDS resulted in higher blood corticosterone levels compared to SAD. At the end of rearing in both 15P and 21P, EDS pullets weighed less than SAD pullets. The onset of egg production was 20 and 24 wk of age for the 15P and 21P hens, respectively. Despite an earlier onset, 15P hens did not produce more eggs than 21P hens through 65 wk of age. Egg weight was reduced for 15P compared to 21P until 30 wk of age. The 15P hens had a greater number of double yolk eggs than the 21P hens. Fertility and hatch were not impacted by the advanced growth curve and early photostimulation. Although the current research indicates the potential to reduce feed restriction associated welfare issues by rearing broiler breeder pullets for an earlier photostimulation onset, further research in needed to determine if this management technique can be improved to optimize hen reproductive efficiency.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。