The Sodium-Glucose Co-Transporter-2 (SGLT2) Inhibitors Reduce Platelet Activation and Thrombus Formation by Lowering NOX2-Related Oxidative Stress: A Pilot Study

钠-葡萄糖协同转运蛋白 2 (SGLT2) 抑制剂通过降低 NOX2 相关的氧化应激来减少血小板活化和血栓形成:一项初步研究

阅读:7
作者:Pasquale Pignatelli, Francesco Baratta, Raffaella Buzzetti, Alessandra D'Amico, Valentina Castellani, Simona Bartimoccia, Antonio Siena, Luca D'Onofrio, Ernesto Maddaloni, Annachiara Pingitore, Giovanni Alfonso Chiariello, Francesca Santilli, Daniele Pastori, Nicholas Cocomello, Francesco Violi, Mar

Abstract

Sodium−glucose co-transporter-2 inhibitors or gliflozins, the newest anti-hyperglycemic class, induce cardioprotective benefits in patients with type 2 diabetes (T2D). As platelet activation and oxidative stress play a key role in atherothrombotic-related complications, we hypothesized that gliflozins might modulate oxidative stress, platelet activation and thrombus formation. We performed an interventional open-label single-arm before-after study in 32 T2D patients on top of their ongoing metformin therapy. The population was divided into two groups: treatment with GLP-1 receptor agonists (GLP-1RA, Group A) and gliflozins (Group B). Oxidative stress, platelet activation and thrombus growth were assessed before and after 15 days of treatment. Compared to the baseline, gliflozins treatment significantly decreased sNOX2-dp (−45.2%, p < 0.001), H2O2 production (−53.4%, p < 0.001), TxB2 (−33.1%, p < 0.001), sP-selectin (−49.3%, p < 0.001) and sCD40L levels (−62.3%, p < 0.001) as well as thrombus formation (−32%, p < 0.001), whereas it potentiated anti-oxidant power (HBA, +30.8%, p < 0.001). Moreover, a significant difference in oxidative stress, platelet activation and thrombus formation across groups A and B was found. In addition, an in vitro study on stimulated platelets treated with gliflozins (10−30 μM) showed a reduction in oxidative stress, platelet activation and thrombus growth. Our results showed that gliflozins have antiplatelet and antithrombic activity related to an NOX2 down-regulation, suggesting a new mechanism responsible for cardiovascular protection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。