Effect of PITX2 knockdown on transcriptome of primary human trabecular meshwork cell cultures

PITX2 敲低对人原代小梁网细胞培养物转录组的影响

阅读:4
作者:Seyed Hassan Paylakhi, Jian-Bing Fan, Mohadeseh Mehrabian, Majid Sadeghizadeh, Shahin Yazdani, Ali Katanforoush, Mozhgan Rezaei Kanavi, Mostafa Ronaghi, Elahe Elahi

Conclusions

Bioinformatics tools revealed that the genes identified affect functions and pathways relevant to glaucoma. Involvement of PITX2 in expression of some of the genes and in some of the pathways is being reported here for the first time. As many of the genes identified have not been studied vis-à-vis glaucoma, we feel they introduce new candidates for understanding this devastating disease.

Methods

Expression profiles derived using microarrays were compared between TM control cells and cells treated with PITX2 siRNAs using three protocols so as to minimize false positive and negative

Purpose

To identify genes whose expressions in primary human trabecular meshwork (TM) cell cultures are affected by the transcription factor pituitary homeobox 2 (PITX2) and to identify genes that may have roles in glaucoma. Known glaucoma causing genes account for disease in a small fraction of patients, and we aimed at identification of other genes that may have subtle and accumulative effects not easily identifiable by a genetic approach.

Results

The expression level of 41 genes was assessed by to be possibly affected by PITX2 knockdown. Twenty one genes were down-regulated and twenty were upregulated. The expression of five genes was assessed to be altered by all three analysis protocols. The five genes were DIRAS3 (DIRAS family, GTP-binding RAS-like 3), CXCL6 (chemokine (C-X-C motif) ligand 6), SAMD5 (sterile alpha motif domain containing 5), CBFB (core-binding factor, beta subunit), and MEIS2 (meis homeobox 2). Real time PCR experiments verified results on a subset of genes tested. Notably, the results were also confirmed in two independent TMs. Effects on CXCL6 and ALDH1A1 were also confirmed by western blots, and effects on ALDH1A1 were further shown by immunocytochemistry. Data consistent with PITX2 involvement in ALDH1A1 mediated response to oxidative stress were presented. Conclusions: Bioinformatics tools revealed that the genes identified affect functions and pathways relevant to glaucoma. Involvement of PITX2 in expression of some of the genes and in some of the pathways is being reported here for the first time. As many of the genes identified have not been studied vis-à-vis glaucoma, we feel they introduce new candidates for understanding this devastating disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。