Impact of Top-Down Regulation on the Growth Efficiency of Freshwater Bacterioplankton

自上而下的调控对淡水浮游细菌生长效率的影响

阅读:6
作者:Angia Sriram Pradeep Ram, Hermine Billard, Fanny Perriere, Olivier Voldoire, Jonathan Colombet

Abstract

To investigate the hypothesis of top-down control by viruses and heterotrophic nanoflagellates on bacterial-mediated carbon fluxes in freshwater systems, a year-long study (2023-2024) was conducted in the pelagic zone of Lake Saint-Gervais (France). The variability in BGE (9.9% to 45.5%) was attributed to the decoupling of production and respiration, providing bacterioplankton communities with a competitive advantage in adapting to fluctuating environmental disturbances in freshwater systems. The high nucleic acid (HNA) bacterial community, the active fraction, contributed the most to bacterial production and was linked to BGE estimates. Weak bottom-up controls (nutrient concentrations and stoichiometry) on BGE suggested a stronger role for mortality forces. Among viral subgroups (VLP1-VLP4) identified via flow cytometry, the dominant low-fluorescence DNA VLP1 subgroup (range = 0.7 to 3.1 × 108 VLP mL-1) accounting for the majority of viral production was closely linked to the HNA population. Both top-down forces exerted antagonistic effects on BGE at the community level. The preferential lysis and grazing of the susceptible HNA population, which stimulated bacterial community respiration more than production in the non-target population, resulted in reduced BGE. These results underscore the key role of top-down processes in shaping carbon flux through bacterioplankton in this freshwater system.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。