SCRATCH: A programmable, open-hardware, benchtop robot that automatically scratches cultured tissues to investigate cell migration, healing, and tissue sculpting

SCRATCH:一种可编程的、开放硬件的台式机器人,可自动刮擦培养组织,以研究细胞迁移、愈合和组织雕刻

阅读:10
作者:Yubin Lin, Alexander Silverman-Dultz, Madeline Bailey, Daniel J Cohen

Abstract

Despite the widespread popularity of the 'scratch assay', where a pipette is dragged through cultured tissue to create an injury gap to study cell migration and healing, the manual nature of the assay carries significant drawbacks. So much of the process depends on individual manual technique, which can complicate quantification, reduce throughput, and limit the versatility and reproducibility of the approach. Here, we present a truly open-source, low-cost, accessible, and robotic scratching platform that addresses all of the core issues. Compatible with nearly all standard cell culture dishes and usable directly in a sterile culture hood, our robot makes highly reproducible scratches in a variety of complex cultured tissues with high throughput. Moreover, we demonstrate how scratching can be programmed to precisely remove areas of tissue to sculpt arbitrary tissue and wound shapes, as well as enable truly complex co-culture experiments. This system significantly improves the usefulness of the conventional scratch assay, and opens up new possibilities in complex tissue engineering and cell biological assays for realistic wound healing and migration research.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。