Adipose-derived stem cells transplantation improves survival and alleviates contraction of skin grafts via promoting macrophages M2 polarization

脂肪干细胞移植通过促进巨噬细胞 M2 极化提高存活率并减轻皮肤移植物的收缩

阅读:10
作者:Yuying Cui, Jiahao He, Zheyuan Yu, Sizheng Zhou, Dejun Cao, Taoran Jiang, Bin Fang, Guangshuai Li

Background

Full-thickness skin grafts are widely used in plastic and reconstructive surgery. The main limitation of skin grafting is the poor textural durability and associated contracture, which often needs further corrective surgery. Excessive inflammation is the main reason for skin graft contractions, which involve overactivation of myofibroblasts. These problems have prompted the development of new therapeutic approaches, including macrophage polarization modulation and stem cell-based therapies. Currently, adipose-derived stem cells (ASCs) have shown promise in promoting skin grafts survival and regulating macrophage phenotypes. However, the roles of ASCs on macrophages in decreasing skin grafts contraction remain unknown. Materials and

Conclusion

ASCs treatment enhanced vascularization via angiogenic cytokines secretion and alleviated inflammatory environment in skin grafts by driving M2 macrophages polarization, which improved survival and decreased skin grafts contraction. Our work showed that ASCs transplantation can be harnessed to enhance therapeutic efficacy of skin grafting in cutaneous defects treatment.

Methods

Rat adipose-derived stem cells (rASCs) were isolated from rat inguinal adipose tissues. Full-thickness skin graft model was constructed on male rats divided into control group and rASCs treatment group. Skin graft was assessed for concentration, elasticity modulus and stiffness. Rat bone marrow-derived macrophages (rBMDMs) were isolated from rat femurs, and subsequent RT-qPCR and coculture assays were carried out to explore the cellular mechanisms. Immunohistochemical and immunofluorescence staining were used to verify mechanisms in vivo.

Results

In vivo results showed that after injection of ASCs, improved texture, increased survival and inhibited contraction of skin grafts were seen. Vascularization was also improved as illustrated by laser perfusion image and vascular endothelial growth factor (VEGF) concentration. Histological analysis revealed that ASCs injection significantly reduced expression of pro-inflammatory cytokines (TNF-a, IL-1β) and increased expression of anti-inflammatory (IL-10) and pro-healing cytokines (IGF-1). At cellular level, after co-culturing with rASCs, rat bone marrow derived macrophages (rBMDMs) favored M2 polarization even under inflammatory stimulus.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。