Regulatory role of electroacupuncture on satellite glial cell activity in the colon and dorsal root ganglion of rats with irritable bowel syndrome

电针对肠易激综合征大鼠结肠及背根神经节卫星胶质细胞活动的调节作用

阅读:5
作者:Zhang Fang, Yan Cuina, Weng Zhijun, W U Luyi, Q I Li, Zhao Min, Xin Yuhu, W U Huangan, Liu Huirong

Conclusions

EA can regulate the excitatory properties of colon-related DRG neurons by downregulating the protein and mRNA expression of GFAP in the colon and colon-related DRG, indicating a potential neurobiological mechanism by which EA relieves visceral hypersensitivity in rats with IBS.

Methods

A model for visceral hypersensitivity in IBS was induced through colorectal distension (CRD) stimulation. Clean-grade male Sprague-Dawley (SD) rats were randomly divided into four groups: a normal group (NG), a model group (MG), an electroacupuncture group (EA), and a glial cell inhibitor group (FCA). Bilateral EA (2/100 Hz, 1 mA, 30 min) was administered at the Tianshu (ST25) and Shangjuxu (ST37) in week 6. Abdominal withdrawal reflex (AWR) scores were used to assess the behavioral response associated with visceral hyperalgesia, while hematoxylin-eosin staining was employed to evaluate pathological changes in the colon. The protein and mRNA levels of glial fibrillary acidic protein (GFAP) in the colon and colon-related dorsal root ganglion (DRG) were analyzed using immun-ofluorescence, immun-ohistochemistry, Western blotting, real-time polymerase chain reaction. The impact of EA on electrophysiological properties of colon-related DRG neurons was observed through whole-cell patch clamp analysis.

Objective

To investigate the role of satellite glial cells in irritable bowel syndrome (IBS) and the effect of electroacupuncture (EA) at the Tianshu (ST25) and Shangjuxu (ST37) combination.

Results

EA significantly reduced the visceral pain behavior scores in rats with IBS in response to graded (20, 40, 60, 80 mm Hg) CRD stimulation. Additionally, EA downregulated the protein and mRNA expression levels of GFAP in the colon and colon-related DRG of rats with IBS. EA also regulated the resting membrane potential, rheobase and action potential of colon-related DRG neurons in rats with IBS. Conclusions: EA can regulate the excitatory properties of colon-related DRG neurons by downregulating the protein and mRNA expression of GFAP in the colon and colon-related DRG, indicating a potential neurobiological mechanism by which EA relieves visceral hypersensitivity in rats with IBS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。