Caffeine-Operated Synthetic Modules for Chemogenetic Control of Protein Activities by Life Style

咖啡因操作的合成模块用于通过生活方式化学遗传控制蛋白质活性

阅读:12
作者:Tianlu Wang, Lian He, Ji Jing, Tien-Hung Lan, Tingting Hong, Fen Wang, Yun Huang, Guolin Ma, Yubin Zhou

Abstract

A genetically encoded caffeine-operated synthetic module (COSMO) is introduced herein as a robust chemically induced dimerization (CID) system. COSMO enables chemogenetic manipulation of biological processes by caffeine and its metabolites, as well as caffeinated beverages, including coffee, tea, soda, and energy drinks. This CID tool, evolved from an anti-caffeine nanobody via cell-based high-throughput screening, permits caffeine-inducible gating of calcium channels, tumor killing via necroptosis, growth factors-independent activation of tyrosine receptor kinase signaling, and enhancement of nanobody-mediated antigen recognition for the severe acute respiratory distress coronavirus 2 (SARS-CoV-2) spike protein. Further rationalized engineering of COSMO leads to 34-217-fold enhancement in caffeine sensitivity (EC50 = 16.9 nanomolar), which makes it among the most potent CID systems like the FK506 binding protein (FKBP)-FKBP rapamycin binding domain (FRB)-rapamycin complex. Furthermore, bivalent COSMO (biCOMSO) connected with a long linker favors intramolecular dimerization and acts as a versatile precision switch when inserted in host proteins to achieve tailored function. Given the modularity and high transferability of COMSO and biCOSMO, these chemical biology tools are anticipated to greatly accelerate the development of therapeutic cells and biologics that can be switched on and off by caffeinated beverages commonly consumed in the daily life.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。