Conclusion
MTZ-thermosensitive hydrogels could be considered a prospective local oral drug delivery system to achieve efficient sustained release and improve the drug pharmacological properties in periodontitis treatment.
Methods
The thermosensitive hydrogels were prepared by blending 28% w/v Pluronic F127 with various concentrations of methylcellulose (MC) and silk fibroin (SF). The gel properties, such as sol-gel transition time, viscosity, and gel strength, were investigated. The drug dissolution profiles, together with their theoretical models and gel dissolution characteristics, were also determined.
Results
All hydrogel formulations exhibited sol-gel transitions at 37°C within 1 min. An increase in MC content proportionally increased the viscosity but decreased the gel strength of the hydrogel. By contrast, the SF content did not significantly affect the viscosity but increased the gel strength of the hydrogel. The thermosensitive hydrogels also showed prolonged MTZ release characteristics for 10 days in phosphate-buffered saline (PBS) at pH 6.6, which followed the Higuchi diffusion model. Moreover, MTZ-thermosensitive hydrogel exhibited delayed dissolution in PBS at 37°C for more than 9 days.
